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Abstract

Large-scale machine learning training, in particular distributed stochastic gradient
descent, needs to be robust to inherent system variability such as node straggling
and random communication delays. This work considers a distributed training
framework where each worker node is allowed to perform local model updates
and the resulting models are averaged periodically. We analyze the true speed
of error convergence with respect to wall-clock time (instead of the number of
iterations), and analyze how it is affected by the frequency of averaging. The main
contribution is the design of ADACOMM, an adaptive communication strategy
that starts with infrequent averaging to save communication delay and improve
convergence speed, and then increases the communication frequency in order to
achieve a low error floor. Rigorous experiments on training deep neural networks
show that ADACOMM can take 3× less time than fully synchronous SGD, and still
reach the same final training loss.

1 Introduction

Stochastic gradient descent (SGD) is the backbone of state-of-the-art supervised learning, which is
revolutionizing inference and decision-making in many diverse applications. Due to the massive
training data-sets and neural network architectures used today, it has became imperative to design
distributed SGD implementations, where gradient computation and aggregation is parallelized across
multiple worker nodes. Although parallelism boosts the amount of data processed per iteration, it
exposes SGD to unpredictable node slowdown and communication delays stemming from variability
in the computing infrastructure. Thus, there is a critical need to make distributed SGD fast, yet robust
to system variability.

Local-Update SGD to Reduce Communication Delays. A popular distributed SGD implemen-
tation is the parameter server framework [7, 4, 14, 10, 18] where in each iteration, worker nodes
compute gradients on one mini-batch of data and a central parameter server aggregates these gradients
(synchronously or asynchronously) and updates the parameter vector x. The constant communication
between the parameter server and worker nodes in each iteration can be expensive and slow in
bandwidth-limited computed environments. Recently proposed distributed SGD frameworks such
as Elastic-averaging [27, 2], Federated Learning [17, 23] and decentralized SGD [15, 12] save this
communication cost by allowing worker nodes to perform local updates to the parameter x instead
of just computing gradients. The resulting locally trained models (which are different due to vari-
ability in training data across nodes) are periodically averaged through a central server, or via direct
inter-worker communication. Periodic averaging has been shown to offer significant speedup in deep
neural network training [19, 26, 24, 28, 16].

Error-Runtime Trade-offs in Local-Update SGD. While local updates reduce the communication-
delay incurred per iteration, discrepancies between the models can result in an inferior error-
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convergence. For example, consider the case of periodic averaging SGD (PASGD) where each
of m worker nodes makes τ local updates, and the resulting models are averaged after every τ
iterations. In the error-runtime in Figure 1, we observe a trade-off between the convergence speed
and the error floor when the number of local updates τ is varied. A larger τ gives a faster initial drop
in the training loss but results in a higher error floor. This calls for adaptive communication strategies
that start with a larger τ and gradually decrease it as the model reaches closer to convergence. Such
an adaptive strategy will offer a win-win in the error-runtime trade-off by achieving fast convergence
as well as low error floor. In this paper, based on joint runtime and error-convergence analysis, we
develop an adaptive communication scheme: ADACOMM. Experiments on training VGG-16 and
ResNet-50 deep neural networks and different settings (with/without momentum, fixed/decaying
learning rate) show that ADACOMM can give a 3× runtime speed-up and still reach the same low
training loss as fully synchronous SGD.

Wall clock time# Iterations

Tr
ai

ni
ng

 lo
ss

Large comm. period

Small comm. period

Adaptive Comm.

Tr
ai

ni
ng

 lo
ss

# Iteration à Elapsed time

Change x-axis

Figure 1: This work departs from the tradi-
tional view of considering error-convergence
with respect to the number of iterations, and
instead considers the true convergence in
terms of error versus wall-clock time. Adap-
tive strategies that start with infrequent model-
averaging and increase the communication
frequency can achieve the best error-runtime
trade-off.

Although we focus on periodic simple-averaging of
local models, the insights on error-runtime trade-
offs and adaptive communication strategies are di-
rectly extendable to other communication-efficient
SGD algorithms including Federated Learning [17],
Elastic-Averaging [27] and Decentralized averaging
[12, 15], as well as synchronous/asynchronous dis-
tributed SGD with a central parameter server [7, 4, 9].

2 Problem Framework

Empirical Risk Minimization via Mini-batch
SGD. Suppose the training dataset is denoted by
S = {s1, . . . , sN}, where si represents the i-th la-
beled data point. Our goal is to minimize the empiri-
cal risk function with respect to model parameters de-
noted by x ∈ Rd: F (x) = 1

N

∑N
i=1 f(x; si) where

f(x; si) is the composite loss function at the ith data
point. In classic mini-batch stochastic gradient de-
scent (SGD) [8], if ξk ⊂ S represents a randomly sampled mini-batch, then updates to the parameter
vector x are performed as: xk+1 = xk − ηg(xk; ξk) where η denotes the learning rate and the
stochastic gradient is defined as g(x; ξ) = 1

|ξ|
∑
si∈ξ∇f(x; si). For simplicity, we will use g(xk)

instead of g(xk; ξk) in the rest of the paper. A complete review of convergence properties of serial
SGD can be found in [1].

Periodic Averaging SGD (PASGD). In PASGD, all workers start at the same initial point x1 and
perform τ local mini-batch SGD updates. The local models are averaged by a fusion node or by
performing an all-node broadcast. The workers then update their local models with the averaged
model. Thus, the overall update rule at the ith worker is given by

x
(i)
k+1 =

{
1
m

∑m
j=1[x

(j)
k − ηg(x

(j)
k )], kmod τ = 0

x
(i)
k − ηg(x

(i)
k ), otherwise

(1)

where x
(i)
k denote the model parameters in the i-th worker after k iterations and τ is defined as the

communication period. Note that the iteration index k corresponds to the local iterations, and not
the number of averaging steps. When τ = 1, that is, the local models are synchronized after every
iteration, periodic averaging SGD is equivalent to fully synchronous SGD.

Local Computation Times and Communication Delay. In order to analyze the effect of τ on
the expected runtime per iteration, we consider the following delay model. The time taken by the
ith worker to compute a mini-batch gradient at the kth local-step is modeled as a random variable
Yi,k ∼ FY , assumed to be i.i.d. across workers and mini-batches. The communication delay is a
random variable D for each all-node broadcast. The value of random variable D should depend on
the number of workers invloved in the communication.
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3 Jointly Analyzing Runtime and Error-Convergence

Runtime Analysis. We now present a comparison of the runtime per iteration of periodic averaging
SGD (TP-Avg) with fully synchronous SGD (Tsync) to illustrate how increasing τ can lead to a large
runtime speed-up.
Theorem 1 (Runtime per iteration comparison). Suppose the ith worker takes wall-clock time Yi,k
to compute the gradient of the kth mini-batch. Then,

E [Tsync]

E [TP-Avg]
=

E [max(Y1,1, Y2,1, . . . , Ym,1) +D]

E
[
max(Y 1, Y 2, . . . , Y m) +D/τ

] = E [Ym:m +D]

E
[
Y m:m +D/τ

] (2)

where Y i = (Yi,1 + Yi,2 + · · ·+ Yi,τ )/τ denotes the average computation time of τ local updates at
the ith worker. The term Ym:m denotes the highest order statistic of m i.i.d. random variables [6].

Due to space limitations, please refer to the arXiv version1 for the proof details if interested. Observe
that as we increase τ , Tsync remains same but TP-Avg decreases in two ways: 1) τ -fold reduction in the
communication delay and 2) reduction in the expectation of the maximum of the local computation
times (Y is replaced by Y in the denominator), that is, reduction in additional delay due to slow or
straggling workers. Figure 2 shows the probability distribution of Tsync and TP-Avg for exponentially
distributed Y . Note that TP-Avg has a much lighter tail.

Joint Analysis with Error-convergence. Then, we combine the runtime analysis with previous
error-convergence analysis for PASGD [25]. From the following theorem, one can easily observe the
error-runtime trade-off for different communication periods.
Theorem 2 (Error-runtime Convergence of PASGD). For PASGD, under certain assumptions (stated
in the arXiv version), if the learning rate satisfies ηL + η2L2τ(τ − 1) ≤ 1 and all workers are
initialized at the same point x1, then after total T wall-clock time, the minimal expected squared
gradient norm within this time interval will be bounded by:

2 [F (x1)− Finf]

ηT

(
E
[
Y m:m

]
+

E [D]

τ

)
+
ηLσ2

m
+ η2L2σ2(τ − 1) (3)

where L is the Lipschitz constant of the objective function and σ2 is the variance bound of mini-batch
stochastic gradients. When the upper bound is arbitrary small, the algorithm is guaranteed to
converge to a stationary point.

While a larger τ reduces the runtime per iteration and let the first term in (3) become smaller, it
also adds additional noise and increases the last term. In Figure 3, we plot theoretical bounds for
both fully synchronous SGD (τ = 1) and PASGD. It is shown that although PASGD with τ = 10
starts with a rapid drop, it will eventually converge to a high error floor. This theoretical result is
corroborated by experiments in Section 5. Another direct outcome of Theorem 2 is the determination
of the best communication period that balances the first and last terms in (3). We will discuss the
selection of communication period later in Section 4.
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Figure 2: Probability distribution of runtime per it-
eration, where communication delay D = 1, mean
computation time E[Y ] = 1, and number of work-
ers m = 16. Dash lines represent the mean values.
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Figure 3: Illustration of theoretical error bound
versus runtime in Theorem 2. The runtime per
iteration is generated under the same parameters as
Figure 2. Other constants in (3) are set as follows:
F (x1) = 1, Finf = 0, η = 0.08, L = 1, σ2 = 1.

1https://arxiv.org/abs/1810.08313
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4 ADACOMM: Proposed Adaptive Communication Strategy

Inspired by Theorem 2, the basic idea to adapt the communication is to choose the communication
period that minimizes the optimization error at each wall-clock time. In order to achieve this goal, we
divide the whole training procedure into uniform wall-clock time intervals with the same length T0.
At the beginning of each time interval, we select the best value of τ that has the fastest decay rate in
the next T0 wall-clock time as illustrated in Figure 4.
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Figure 4: Illustration of communication
period adaptation strategy: choosing the
best τ for each time interval. Dash line
denotes the learning curve using adap-
tive communication.

Determining the Best Communication Period for Each
Time Interval. From Theorem 2, it can be observed that
there is an optimal value τ∗ that minimizes the optimiza-
tion error bound at given wall-clock time. In particular,
consider the simplest setting where Y and D are constants.
Then, by minimizing the upper bound (3) over τ , we obtain
the following.
Theorem 3. For PASGD, under the same assumptions as
Theorem 2, the optimization error upper bound in (3) at
time T is minimized when the communication period is

τ∗ =

√
2(F (x1)− Finf)D

η3L2σ2T
. (4)

The proof is straightforward by setting the derivative of
(3) to zero. Directly applying Theorem 3 to the lth(l ≥ 0)
time interval, since workers can be viewed as restarting training at a new initial point x1 = xt=lT0

,
the best choice of communication period is:

τl =

√
2(F (xt=lT0)− Finf)D

η3l L
2
l σ

2T0
(5)

where ηl, Ll denote the learning rate and local Lipschitz constant in the lth time interval respectively.
When the learning rate is fixed, it is easy to see the generated communication period sequence
decreases along with the objective value F (xt). Decaying communication period is similar in spirit
to decaying learning rate. The key difference is that here we are optimizing the true error convergence
with respect to wall-clock time rather than the number iterations.

Practical Considerations. Note that, for deep neural networks, estimating the unknown constants
(such as Lipschitz constant L and variance bound σ2) in (5) can be difficult and unreliable due to the
highly non-convex and high-dimensional loss surface. As an alternative, we propose a simpler rule
where we approximate Finf by 0, ηlLl ≈ 1 (which is common in SGD literature), and divide (5) by
the expression of τ0 to obtain the basic communication period update rule:

Basic update rule τl =

⌈√
η0
ηl

F (xt=lT0
)

F (xt=0)
τ0

⌉
(6)

where dae is the ceil function to round a to the nearest integer ≥ a. Since the objective function
values (i.e., training loss) F (xt=lT0) and F (xt=0) can be easily obtained in the training, the only
remaining thing now is to determine the initial communication period τ0. We obtain a heuristic
estimate of τ0 by a simple grid search over different τ run for one or two epochs each. Further,
in order to eliminate the noise introduced by local updates, we choose to first gradually decay the
communication period to 1 and then decay the learning rate as usual.

Refinement: Faster Decay When Training Saturates. The communication period update rule (6)
tends to give a decreasing sequence {τl}. Nonetheless, when the training loss gets stuck on plateaus
and decreases very slowly, (6) will result in τl saturating at the same value for a long time. To
address this issue, the communication period will be multiplied by γ < 1 when the τl given by (6)

is not strictly less than τl−1. Namely, τl = γτl−1 if d
√

η0
ηl

F (xt=lT0
)

F (xt=0)
τ0e ≥ τl−1 and ηl = ηl−1. In

the experiments, γ = 1/2 turns out to be a good choice. One can obtain a more aggressive decay
in τl by either reducing the value of γ or introducing a slack variable s in the condition, such as

d
√

η0
ηl

F (xt=lT0
)

F (xt=0)
τ0e+ s ≥ τl−1.
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5 Experimental Results

The proposed adaptive communication scheme was implemented in PyTorch [20] with MPI4Py [5].
All experiments were conducted on a local cluster where each worker node has an NVIDIA TitanX
GPU. We evaluate our method for image classification tasks on CIFAR10 and CIFAR100 dataset [13].
Each worker machine is assigned with a partition which will be randomly shuffled after every epoch.

We choose to train deep neural networks VGG-16 [22] and ResNet-50 [11] from scratch. These
two neural networks have different architectures and parameter sizes, thus resulting in different
performance of periodic averaging. Moreover, unless otherwise stated, we used 4 worker nodes and
mini-batch size on each worker is 128. The initial learning rates for VGG-16 and ResNet-50 are
0.2 and 0.4 respectively. The weight decay for both networks is 0.0005. In the variable learning
rate setting, we decay the learning rate by 10 after 80th/120th/160th/200th epochs. The time interval
length T0 is set as 60 seconds (about 10 epochs for the initial communication period). Instead of
training for a fixed number of epochs, we train all methods for sufficiently long time to convergence
and compare the training loss and test accuracy, both of which are recorded after every 100 iterations.

Adaptive Communication in PASGD. Figure 5 presents the results for VGG-16 for both fixed and
variable learning rates. A large communication period τ initially results in a rapid drop in the training
loss, but the error finally converges to higher floor. By adapting τ , the proposed ADACOMM scheme
strikes the best error-runtime trade-off in all settings. In Figure 5a, while fully synchronous SGD
takes 33.5 minutes to reach 3× 10−3 training loss, ADACOMM costs 15.5 minutes achieving more
than 2× speedup.

However, for ResNet-50, the communication overhead is no longer the bottleneck. For fixed commu-
nication period, the negative effect of performing local updates becomes more obvious and cancels
the benefit of low communication delay (see Figures 6b and 6c). It is not surprising to see fully
synchronous SGD is nearly the best one in the error-runtime plot among all fixed-τ methods. Even in
this extreme case, adaptive communication can still have a competitive performance.

Adaptive Communication in Momentum SGD. The adaptive communication scheme is proposed
based on the joint error-runtime analysis for PASGD without momentum. However, it can also be
extended to other SGD variants, here we show that the proposed method works well for SGD with
momentum. To combine momentum and periodic averaging, we use the block momentum scheme
that was proposed in [3, 21] and applied to speech recognition tasks. The basic idea is treating the
accumulated local updates in one period as one big gradient step between two synchronized models
and introducing a global momentum for this big accumulated step. The update rule can be written as
follows in terms of the momentum uj :

uj = βglobuj−1 + Gj (7)
x(j+1)τ+1 = xjτ+1 − ηjuj (8)

where Gj = 1
m

∑m
i=1

∑τ
k=1 g(x

(i)
jτ+k) represents the accumulated gradients in the jth local update

period and βglob denotes the global momentum factor. Moreover, workers can also conduct momentum
SGD on local models, but their local momentum buffer will be cleared at the beginning of each local
update period. Namely, we restart momentum SGD on local models after each averaging step. We set
the global momentum factor as 0.3 and local momentum factor as 0.9 following [16].

In Figure 7, we observe significant performance gain when combing adaptive communication and
block momentum. In particular, the adaptive communication scheme has the fastest convergence
rate with respect to wall-clock time in the whole training process. While fully synchronous SGD
gets stuck with a plateau before the first learning rate decay, the training loss of adaptive method
continuously decreases until converging. For VGG-16 in Figure 7b, ADACOMM is 3.5× faster (in
terms of wall-clock time) than fully synchronous SGD in reaching a 3× 10−3 training loss.

6 Concluding Remarks

The design of fast communication-efficient distributed SGD algorithms that are robust to system
variability is vital to enable machine learning training to scale to resource-limited computing nodes.
This paper is one of the first to analyze the convergence of error with respect to wall-clock time
instead of number of iterations by accounting for the dependence of runtime per iteration on systems
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(b) Fixed lr. on CIFAR10.
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Figure 5: ADACOMM on VGG-16: Achieves 3.3× speedup over fully synchronous SGD (in (b), 11.5
versus 38.0 minutes to achieve 4.5× 10−2 training loss).
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Figure 6: ADACOMM on ResNet-50: Achieves 1.4× speedup over Sync SGD (in (a), 18.8 versus
26.6 minutes to achieve 2× 10−2 training loss).
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(a) ResNet-50 on CIFAR10.
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(b) VGG-16 on CIFAR10.

0 10 20 30 40
Wall clock time / min

0

1

2

3

4

5

T
ra

in
in

g 
lo

ss

ResNet-50 w/ block momentum, CIFAR100

 = 1
 = 20
 = 100

AdaComm

0 10 20 30 40
0

10

20

C
om

m
. P

er
io

d

(c) ResNet-50 on CIFAR100.

Figure 7: ADACOMM with block momentum: Achieves 3.5× speedup over Sync SGD (in (b), 19.0
versus 66.7 minutes to achieve 3× 10−3 training loss).

aspects such as computation and communication delays. We present a theoretical analysis of the
error-runtime trade-off for periodic averaging SGD (PASGD), where each worker node performs
local updates and their models are averaged after every τ iterations. Based on the joint error-runtime
analysis, we design the first (to the best of our knowledge) adaptive communication strategy called
ADACOMM for distributed deep learning. Experimental results using VGGNet and ResNet show
that the proposed method can achieve up to a 3× improvement in runtime, while achieving the same
error floor as fully synchronous SGD. Going beyond periodic-averaging SGD, our idea of adapting
frequency of averaging distributed SGD updates can be easily extended to other SGD frameworks
including elastic-averaging [27], decentralized SGD [15] and parameter server-based training [7].
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